BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Multiscale Finite Element Methods (GMsFEM)

Article history: Received 8 September 2012 Received in revised form 18 April 2013 Accepted 24 April 2013 Available online 22 May 2013

متن کامل

Resonance Error in Multiscale Finite Element Methods

A multiscale nite element method (MFEM) 9, 7] has been introduced to capture the large scale solutions of elliptic equations with highly oscillatory coeecients. This is accomplished by constructing the multiscale base functions from the local solutions of the elliptic operator. Our previous study reveals that the leading order error in this approach is caused by the \resonant sampling", which l...

متن کامل

Multiscale Finite Element Methods for Elliptic Equations

Here and throughout this chapter, the Einstein convention for repeated indices are assumed. The problem (9.1) a model multiscale problem which arises in the modeling of composite materials and the flow transport in heterogeneous porous media. The main difficulty in solving it by standard finite element method is that when ε is small, the underlying finite element mesh h must be much less than ε...

متن کامل

Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Me...

متن کامل

Subgrid Upscaling and Mixed Multiscale Finite Elements

Second order elliptic problems in divergence form with a highly varying leading order coefficient on the scale can be approximated on coarse meshes of spacing H only if one uses special techniques. The mixed variational multiscale method, also called subgrid upscaling, can be used, and this method is extended to allow oversampling of the local subgrid problems. The method is shown to be equival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Multiscale Computational Engineering

سال: 2017

ISSN: 1543-1649

DOI: 10.1615/intjmultcompeng.2017019851